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The problem of constructing adequate constitutive equations to describe creep is one 
of the most complex problems in continuum mechanics. The problem of describing deformation 
to fracture is especially important. It is presently solved either on the basis of a 
dimensionless damage parameter (see [1-4], for example) or through the use of a damage 
function that can be identified with unit fracture work [5]. The main difficulty in these 
approaches lies in obtaining reliable estimates for the damage criterion. In the present 
investigation, we propose an approach to construction of constitutive creep equations which 
makes it possible to describe all stages of the process without the use of a damage func- 
tion. The approach being proposed here also makes it possible to allow for the initial 
ductility properties of the material. 

i. Introduction. With regard to the solution of problems involving construction of 
constitutive equations, the concept that is most frequently employed in creep theory is 
that of the "mechanical equation of state" 

�9 ) "~ t,T : o ,  (i i) 0 [q~., 8~., 8i, 

where �9 is an empirical function; oi, ci c, Si c are the intensities of the stresses, strains, 
and creep rates, respectively; t is time; T is temperature. 

The specific form of the function �9 is found from tests conducted in uniaxial 
tension. The form of the function is most often found using the similarity principle, 
making it possible to represent �9 in the form of a product of functions. Also used are the 
concepts of aging and strain-hardening (as set forth by Soderberg and Davenport, respec- 
tively) and Rabotnov's concept of damage [I, 3-6]. However, this approach usually requires 
refinement before it can adequately describe an actual process. This has to do with the 
need to experimentally substantiate the "single creep curve" hypothesis and establish the 
laws governing the effect of damage on creep rate and the accumulation of creep damages. 

Satisfaction of the similarity condition [I, 4, 5, 7] is of fundamental importance. 
All of the existing forms of Eqs. (i.i) have been found using the assumption that simili- 
tude of creep processes is observed in a coordinate system in which the time t is one of 
the variables and the stresses and temperature are parameters. However, such similitude is 
absent for the steady-state and accelerated stages of creep in most cases [I, 3, 7]. 

More promising is an approach in which similarity of creep processes is sought in the 
coordinates stress vs strain. In this case, t is a parameter. This approach was proposed 
by Rabotnov in [i]. If isochronic creep curves are similar, then the relationship between 
the stresses, strains, and time can be represented as the product of two functions [I]: 

= ~(s)1~(t), ( 1 . 2 )  

where the similarity coefficient % is given by the relation [7] !.~= ~(~).,'~ ~ (e is the 
strain, including the elastic component; a~ is the coordinate of the isochrone at t = t k 
(k = 0, i ..... n)). 

For the function ~(t), good results are given by the approximation [i, 8-11] 

~(t) = tl(t + a#), ( 1 . 3 )  

where a and b are empirical coefficients (a > O, b ~ I). At t = O, the function >(0) = i, 
while ~(a) is the same as the function which gives the instantaneous stress-strain curve. 

Similarity condition (1.2) for transient creep has been validated experimentally for 
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nearly an infinite base for a wide range of materials [I, 7, 9]. We will additionally eval- 
uate the possibility of generalizing Eq. (1.2) to all characteristic stages of creep, in- 
cluding the third stage. We also choose the approximating function for r in the form 
(1.3), while we determine the coefficients a and b by the method proposed in [I0, ii]. We 
evaluate the validity of criterion (1.2) on the basis of two conditions: obtaining a 
single dependence of A on t with variation of the stresses; reducing the family of 
isoehrones, including the instantaneous stress-strain curve, to a single curve in the 
coordinates a(l + at b) vs a. Some of the results are shown in Fig. 1 a and b (line 1 is 
for glass-textolite at T = 20~ [8], line 2 is for steel EI481 at T = 700~ and line 3 is 
for alloy VZhLI2U at T = lO00~ It can be seen that the experimental points are grouped 
fairly closely (error no greater than 12-15%) around single curves with a change in stress 
from 0.2 to 0.8ay within the range from 1 to I000 h. Creep curves including the third 
stage were typically used in the analysis, the duration of this stage amounting in some 
cases to 70% of the time to rupture. 

2. Unidimensional Constitutive Equations. Similarity condition (1.2) for isochron- 
ic creep curves was established more than 40 years ago and has been substantiated for a 
broad range of materials, but it has not been used to construct constitutive equations. We 
will examine one possible method of solving this problem, limiting ourselves in the first 
step to a unidimensional formulation. 

With allowance for (1.3), we write similarity condition (1.2), which includes the 
instantaneous stress-strain curve ~0(a s) as the isochrone at t = 0, in the form of the re- 

lation 

~o(e '~) = ~t(s  r) [1 + a(t)1. 

W i t h  e s  = ~r  a n d  ~ o t ( e r )  = a o ,  t h i s  r e l a t i o n  b e c o m e s  

q~o(er) = %[t + a(t)] 

(2 . t )  

( 2 . 2 )  

and we postulate that the instantaneous nonlinearity is identical in character to the creep 
nonlinearity. Here, a s is the non-viscous strain; s = ~0 + ~c is the viscous strain, in- 
cluding the initial strain e0 and the creep strain ~r ~t is a function of this strain. In 
(2.1) we also took G(t) = at b. 

The main idea behind representation (2.2) is that the creep process in the plane ~0, 
a develops in a manner similar to instantaneous deformation and is completely determined by 
the form of the function ~0 (Fig. 2a). In the general case, the deformation process can be 
regarded as an alternation of active (da > 0, dt = 0) and passive (da = O, dt > O) regimes 
of variation of the function ~0(a s) (due to an increment in the load or a time increment). 
Thus, loading (t = O) to the prescribed stress a 0 (point A in Fig. 2a) corresponds to 
motion along the straight line OA and causes the deformation a0 = a0/E" After a certain 
time interval t(a 0 = const), creep strain a c accumulates and point A is shifted to position 

C. 
Differentiating both sides of (2.2) with respect to t, we obtain the relation 

d~o(er) der d a 
der dt --~{ o [1 @a(t)]}" (2.3) 

Solving this relation for the rate of accumulation of viscous strain, we find the creep 

equation in the form 
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d~ ~ _  d [d~p 0(~) -1 
dt  d t  {go [t  -~- G (t)]} L ~ ] ' 

(2.4) 

where d4o0(ar)/dar = g0(a s ) characterizes the rate of strain-hardening of the medium. It is 

obvious that, within the framework of constitutive equation (2.4), the character of creep 

will be determined by the structure of the time operator G(t) and the form of the instanta- 

neous stress-strain curve ~0(as). 
We give the instantaneous stress-strain curve g0(a s ) in the form o~he system of equa- 

tions 

lEe  e at 0 ~ es~  ey, 

q30 (gO = [Zey ~- q~o (sP) at ~Y<gS<$B 
(2 .5 )  

and as an example examine features of the creep of materials which undergo linear (~0(ap) = 

E*a p) and power-law (~0(a p) = B(aP) m) strain-hardening. Here, a e and s are the elastic and 

plastic components of the non-viscous strain; ay and a B are the strains corresponding to 

the yield point and ultimate strength; E is the elastic modulus; ~E* is the linear strain- 

hardening modulus; B and m are power strain-hardening coefficients. 
First of all we note that in the strain region a r < ay creep is independent of the 

character of the initial strain-hardening of the material since g0(a s ) ~ E for all materi- 

als. For the creep rate, we can use (2.4) to write 

de c a0 t ( 2 . 6 )  
dt = ab E t1--~' 

where we have taken a ~ = a= - a~ G(t) = atb; g0(a s ) = E. 

In the strain region a= > ay for materials exhibiting linear strain-hardening, we find 

from (2.4) that 

d~C -- ab ~o 1 
dt E*t t - b '  ( 2 . 7 )  

w h i l e  f o r  m a t e r i a l s  e x h i b i t i n g  p o w e r - l a w  s t r a i n - h a r d e n i n g  

dE c / i ~ l /m (l 0 
]1 b, (2 .8 )  

H e r e ,  g0(a s ) = E* a n d  g0(a s ) = Bm(ar) m-l, r e s p e c t i v e l y .  F i g u r e  3 p r e s e n t s  a g r a p h i c a l  i n t e r -  
p r e t a t i o n  o f  t h e  f e a t u r e s  o f  c r e e p  e s t a b l i s h e d  by  Eqs .  ( 2 . 6 ) - ( 2 . 8 ) .  

i t  c a n  b e  s e e n  t h a t  i n  t h e  s t r a i n  r e g i o n  ac < ay - ao ( c u r v e s  1) a nd  f o r  m a t e r i a l s  
w i t h  l i n e a r  s t r a i n - h a r d e n i n g  ( c u r v e s  2 a nd  3 i n  F i g .  3 a ) ,  c r e e p  i s  t r a n s i e n t  (ar ~ O w i t h  
t ~ m a n d  g0(~ s) = c o n s t )  a n d  t h e  c r e e p  c u r v e  h a s  no p o i n t s  o f  i n f l e c t i o n  s i n c e  t h e  s e c o n d  
d e r i v a t i v e  o f  a c w i t h  r e s p e c t  t o  t 

d2~ c a0 t 
dr-- 7 = ab (b ~ 1) (es) t2_b 

qo 

i s  a l w a y s  l e s s  t h a n  z e r o  (b - 1 < 0 ) ,  
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In materials which undergo a pronounced transition from an elastic section to a sec- 
tion with linear strain-hardening, there is a sudden increase in the rate of transient 

creep (curve 2 in Fig. 2b) at a constant stress. This effect is connected with a sudden 
change in the strain-hardening modulus g0(a s ) by the amount Ag0(a s ) = E - E* as the viscous 

strain a r reaches ay at the moment of time when r ~) = ~0(ay). This phenomenon is demon- 
strated to exist in Part 3, with the use of a heat-resistant material as an example. 

The creep of materials which undergo strain-hardening includes all three stages 

(curves 2 and 3 in Fig. 3b). In this case, the second derivative of s with respect to t 

dt  ~ 

at the moment of time 

(2.9) 

becomes equal to zero and a point of inflection (denoted by the asterisk in Fig. 3b) 
appears on the creep curve. Creep rate increases after the point of inflection, since, in 
accordance with (2.4), at g0(a r) ~ 0 ~r ~ ~. The section of the creep curve near the 

inflection point is close to linear and corresponds to steady-state creep. In the case 
when g0(C) = 0, creep occurring at a c > ay - a0 is nearly independent of time (curve 4 in 

Fig. 3a). 
3. Prediction of Creep. In creep problems, it is important to predict and calculate 

plastic strains occurring during steady, stepped, and cyclic loading regimes. To do this 
within the framework of the above constitutive relations, we must have the function ~0(a s) 

and the values of the rheological constants a and b. 
The function ~0(as), including the values of E, E*, B, m, Oy, ay, s is assigned on 

the basis of approximation of experimental data from the uniaxial tension of smooth cylin- 
drical specimens. With the use of the same tension curve and cne creep curve, the coeffi- 

cients ~'and b are determined from the relation [i0] 

lg a q-  b lg t h = lg (o/U(~ - -  i)  (k = i ,  2 . . . . .  i), (3.1) 

where t k is an arbitrary moment of time on the base creep curve; a k is the stress on the 
tension curve corresponding to the creep strain at the moment of time tk; the angle of 

inclination of straight line (3.1) corresponds to the value of b; the segment intercepted 
on the y axis (t k = i) is equal to log a. Table i shows values of the coefficients calcu- 
lated for certain structural materials. The base creep curve was limited to the steady 

stage. 
First we will examine a steady (a 0 = const) loading regime. In this case, to calcu- 

late the creep strains it is sufficient to use equations that can be solved relative to c c. 
Then integrating (2.6) and (2.7) with the initial condition a c = 0 at t = 0 for materials 

with linear strain-hardening, we obtain 

e c =  ~ % t ,  ( 3 . 2 )  

E [' 
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TABLE i 

Alloy a , ( 1 / n )  b b MPa MPa 

12KhlMF 
 1481 

EI929VD 

EI437B 

E1867 

VZhLI2UU 

T, cG 

540 0,005 

600 0,059 

800 0,087 
650 0,048 

800 0,105 
850 0,t00 

900 0,078 
950 0,407 

iO00 0,269 

0,95 

0,33 

0.34 
0130 

0,60 
0,77 

0,55 
0,56 

0,44 

712 

900 
653 

t150 

720 
870 

745 
680 

440 

28,0 

% o - , ,  

6,5 

94,0 

0,33 ltO,O 

0,4i 82,0 
0,4i 82,0 

0,32 8t,0 

0,30 

0,28 

285 

450 

620 
550 

360 
3t0 

430 
320 

375 

while integration of (2.6) and (2.8) for materials with power-law strain-hardening yields 

8 ~= g%~b, (3.3) 

YJ +---f - - ."  

The results of calculations (lines) performed with Eqs. (3.2) and (3.3) are compared 
in Fig. 4 with experimental data (points) for alloy EI437B (a) at T = 650~ and ~ = 400, 
470, and 500 MPa (lines 1-3) and steel 12KhlMF (b) at T = 540~ and o = 200, 250, and 285 
MPa (lines 1-3). The upper right-hand corner shows the character of instantaneous deforma- 
tion. The position of the point of inflection calculated from Eq. (2.9) is denoted by an 
asterisk. The experimental data for alloy EI437B was borrowed from [8]. 

Creep occurring at stresses which vary over time is calculated with the use of 
constitutive equations of the rate type (2.6)-(2.8). These equations in essence reflect 
time-dependent strain-hardening. We will examine the case of a single stepped stress 
change in a regime which involves additional loading and partial unloading. The results of 
the calculation are shown in Fig. 4c along with experimental curves (points) for alloy 

EI437B at T = 70~ a 1 = 300 ~ a 2 = 400 MPa and T = 800~ a 1 = 300 ~ o2 = 200 MPa (lines i 
and 2). The moments of additional loading and partial unloading are denoted by the dark 
points on curves i and 2. 

We assign the regime of cyclic loading with the condition 

o0= om+ ~aT(f, t), (3.4) 

where a m and a a are the static and cyclic components of the stresses; ~ is a periodic func- 
tion of time t and frequency f. As is known [i, 2], in actual materials, a cyclic load 
(3.4) speeds up or slows down creep compared to steady (aa = 0) loading. 

The effect of cyclic loads on the creep process can be accounted for in the form of 
an alternation of additional loadings and unloadings, with the use of (2.6) and (2.8). In 
the ease of rapid cyclic loading (f > I0 Hz), it is sufficient to consider the effect of 
on the yield point ay. This effect is equivalent to an equidistant displacement of the 
function ~0(a p) in (2.5) by the amount aa [12]. The cyclic load in this case obviously 
turns out to have an effect on creep in the strain range a = > ay - a ~ 

Let us examine the case when ~0(a p) decreases by the amount a h. Then, using (3.2) for 

the case of linear strain-hardening, we obtain the equation governing cyclic creep in the 
form 

_ (i + oo] i - _ 

while the use of (3.3) for power-law strain-hardening yields 

o _ + 
(3 .5)  
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It follows from this that a cyclic load accelerates the creep process. Here, 8 a is the 

cyclic creep strain, while o m = a 0. 
A strain-hardening effect (an increase in ~0(aP)) during cyclic loading is seen in ma- 

terials which undergo power-law strain-hardening [12]o In the given case, by analogy with (3.5) 

/ ~ x z / r a .  
e~= I-if)  l%~ (i + a tb) - (oy+ oa)] 11'~ q- (ar--~ (3.6) 

and the creep lag effect takes place. 
Figure 4d compares results calculated from Eqs. (3.5) and (3.6) with experimental 

results (points) for alloy E1867 with a m = 200 and aa = 50 MPa, respectively, for T = 900 
and 950~ (lines i and 2). The solid lines represent static (a a = 0) creep curves. 

On the whole, it can be seen from Fig. 4 that the agreement between the theoretical 
and experimental results is quite satisfactory. In particular, it is seen for materials 
which undergo linear strain-hardening that only transient creep (a) can occur, while all 
three stages of creep can take place for materials which exhibit power-law strain-hardening 

(b). 
4. Prediction of Rupture Strength. We determine the life of a material under creep 

conditions for a specified stress a k as the point on the creep curve whose abscissa corre- 
sponds to the moment of fracture t~ and whose ordinate corresponds to the creep strain ac- 

c (see Fig 2b). In this case, rupture strength can be cumulated up to this moment a n 
calculated (with variation of a k) by simultaneously solving the system of equations 

ee = ~ / [~ ~0' (ss)' G (t)] dt, 8~h= W (tRh), (4. I) 

0 

giving the creep law and the fracture criterion, respectively. 
The creep law can be chosen in the form (3.2) or (3.3), depending on the character of 

the initial strain-hardening of the material. We choose the function r by using a 
representation on fracture under creep conditions as a process which is accompanied by 
embrittlement of the material [1-4]. Within the framework of Eqs. (2.4) and (2.5), the 
maximum creep strain accumulated by the moment of fracture aR c will not exceed a B (see 
points I and 2 in Fig. 2b). We then define the embrittlement as the process of a reduction 
in aR c in relation to a B. For the function ~(tR), we chose an exponential law (points 2 and 

4 in Fig. 2b) such that 

{8~ \-tR/tao 
{ tn~ / n~ 

eR=eBex p [__T)=gB~-~B / . (4.2) 

Here, L is an exponent; aR0 c, tR0 are the strains accumulated by the moment of fracture and 
the time to fracture determined from the base creep curve (curve 2 in Fig. 2b). It was 

assumed in (4.2) that at t R = 0 aR c ~ s at t R > 0 aR c < a B, and at tR4 > tR2 s < aN2" 
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Exponential relation (4.2) should be interpreted not as a physical law, but as an approxi- 
mation which is convenient for determining the coefficients. 

One feature of the proposed approach is the possibility of analytically determining 
the points of inflection on the rupture-strength curve. This possibility exists because 
the creep law in (4.1) is given by system (3.2) or (3.3), and the point of inflection will 
be determined by the attainment of the creep strain ay. In particular, for materials which 
undergo power-law strain-hardening, the time to rupture tR*, corresponding to the point of 
inflection on the rupture-strength curve, is found from the relation 

=t--m* ) ' 
(4.3) 

where a* is the stress at which the creep strain a c = Cy is accumulated during the time tR 
Figure 5 shows some predictions of rupture strength in comparison with experimental 

data (points) for chromium-molybdenum steel 12KhlMF at T = 540~ and heat-resistant nickel 
alloys EI437B (at T = 850 and 800~ VZhLI2U (at T = 1000~ and EI867 (at T = 1000~ 
(lines 1-5)). The calculation was performed using Eqs. (3.3) and (4.2). Curves 1 and 2 
were calculated on the basis of the equation aR c ~ a~. The points of inflection on rupture- 
strength curves 2-4 were calculated from Eq. (4.3). The base creep curves are represented 
by the dark points. The maximum difference between the theory and experiment is 30~ and is 
seen mainly in the high-stress region. In problems of practical importance involving the 
prediction of rupture strength for a base commensurate with the actual service life, the 
difference between theory and experiment is no greater than 20~. 
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ENERGY VARIANT OF THE UNIAXIAL THEORY OF CREEP AND RUPTURE STRENGTH 

V. P. Radchenko ~ UDC 539.376 

All of the procedural recommendations contained in [i] which pertain to the third 
stage of creep are based either on strain-hardening theory or on flow theory, and they all 
have several shortcomings. One deficiency is the impossibility of describing reverse creep 
during unloading. Ignoring the latter in calculations will lead to errors in finding the 
time to rupture, particularly under transient and cyclic loads. Another unresolved problem 
is formulating the governing rheological equations, which make it possible to describe 
creep beyond the elastic limit. There is also the question of the selection of a fracture 
criterion that could be used to describe the following experimentally observed facts: the 
nonmonotonic character of the limiting inelastic strain during fracture; the nonlinear 
character of rupture-strength curves; the presence of a stage of "avalanche" creep. Thus, 
in the present study, we want to develop a creep theory and fracture criterion for metals 

that will allow us to solve the problems just mentioned. 
I. We used the method of strain separation as the basis for construction of the cor- 

responding rheological equations. This method has been proposed for the first and second 
stages of creep [2]. To decribe the third stage, it is customary to adopt a hypothesis in 
which the damage process is directly connected with the cumulative inelastic strain and the 

running stress. One characteristic of the state of the material is the damage parameter, 
which is linked with the relative reduction in the cross-sectional area of the specimen and 
the consequent increase in the true stress due to microscopic fracture of the material dur- 

ing deformation [3-9]. 
In the present study, we further develop the energy approach proposed in [I0-12] to 

describe the stage of softening of the material. In accordance with this approach, the 
damage parameter is assumed to be proportional to the linear combination of the amounts of 
work done by the true stress on creep strain and on plastic deformation. The main form of 

the governing equations is as follows 

e =  e +  e p +  p, e =  ~/E, e p =  • p =  u +  v +  w, 

h = l  

v (t) = vk (t), ~h (t) = 

h=l LO, b h (a ( t ) / a , )  n < v~ (t); 

$ (t) = c (o (t)/~,)'~: ( i. I ) 

= ~0(i -k ~); ( I. 2 ) 

~= ?~P q- aap, (1.3) 

where ~ is the total strain; e and e p are the elastic and plastic strain; p is the creep 
strain; u, v, and w are the viscoelastic, viscoplastic, and viscous components of p; a 0 

and a are the nominal and true stresses; E is the Young's modulus; Ak, ak' bk, c, n, m, a, 
are rheological constants of the material which can be used to describe the first and 
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